容室 おしゃれ泥棒ルパン

 ビーワンサロン、

カット、カラー、パーマはもちろん
少し個性的な髪型まで何でもOKです。
 

エステ、フットケア(インナービュテーィ)と
内面からの美肌、健康美にも
強くご提案しております。
ご予約はこちら
予約制
☎ 03-3388-4505
 
〒165-0026 東京都中野区新井5-23-7-1F
  
2025/7/5

量子テレポーテーションの 先駆者が開発した 新たなコンピューターとは   配線を使わず情報を 「瞬間移動」させる

 
 
 
 
 
 
 
 
 
 
 
 
 

量子テレポーテーションの

先駆者が開発した

新たなコンピューターとは  

配線を使わず情報を

「瞬間移動」させる

 
 
 
 
 
 
白板に向かう古澤明・東京大教授

世界で初めて「量子テレポーテーション」の

実験を成功させた古澤明東京大教授が

率いるチームが、

 

新しいタイプの量子コンピューターを開発した。

 

テレポーテーションを使って行う計算とは

どのようなものか、

仕組みに迫った。

 

 

 ▽そもそも「量子」って何?

 

量子コンピューターとは量子の

特徴を生かしたコンピューターということ。

 

では量子とは?中学校で習ったように

物質を細かく分けていった先に現れる、

 

原子や電子といった小さな粒子のことだ。

 

これだけ小さなレベルまで分割していくと、

私たちが普段目にするような世界とは違う性質を見せる。

 

 

 

例えば原子1個について、

上を向いているか下を向いているかの

区別ができると思ってほしい。

 

「粒子ってまん丸なのでは?」

「何が上で何が下?」と思われるかもしれないが、

 

実際に調べて違いを把握することが可能だ。

 

これを観測という。

 

そして不思議なことに、

観測して上向きか下向きか判明する前の原子は、

実は上向きと下向きの状態が混ざっていて、

上と下どちらが観測されるかは

確率的にしかいえない(重ね合わせ状態という)。

 

「観測前にはどちらか分からないだけで、

実際はどっちか決まっている」のではない。

 

どちらの状態も併せ持っていて、

観測された瞬間に上か下か決まるのだ。

 

混ざり方も必ず50%ずつではなく、

その割合は操作によって変えられるというのもポイントだ。

 

そしてこの上向きか下向きかを「0」か「1」かに

置き換えると、

コンピューターへの応用が見えてくる。

 

 


 ▽計算に活用

 

ここで今普及しているコンピューターが

どんなふうに動いているか見てみる。

 

コンピューターの黎明期には、

例えば回路の電圧の大きさをそのまま

数値として扱う

「アナログコンピューター」が作られたが、

 

今は下火で、

ほとんどがデジタルコンピューターだ。

 

デジタルコンピューターは回路の中の

素子にある一定以上の電圧がかかった状態を1、

 

そうでない状態を0に見立ててることで、

2進数での計算に利用する。

 

こちらの方が計算が正確に速くできるし、

保存や複製、書き換えが簡単だからだ。

 


そういうわけでここで2進数のおさらいをする。

 

すべての数を0と1の組み合わせで表す方式だ。

 

最初の桁は10進数なら0から9までの10個の数字で表すが、

2進数は0と1だけ。

 

1の次は桁が一つ上がって10(10進数の2)となる。

以下11(同3)、100(同4)、101(同5)・・・と続く。

 

2進数の数が10進数では何だったか分からなくなったら、

一の位は2の0乗(つまり0か1)、

2番目の位は2の1乗、

3番目の位は2の2乗となっていることを覚えておくと良い。

 

例えば10110は一番上の位が5なので

2の4乗で十進法の16、

4番目の位は0なので何もなし、

 

3番目の位は2の2乗で4、

2番目の位は2の1乗で2、

1の位は0、

これを全部足して22(16+4+2=22)ということだ。

 

 

5は2進数で101だった。

これは三つの並んだ素子を「1」「0」「1」という状態にすれば、

5を3桁の2進数で表現したことになる。

 

この状態に数字の3(2進数では2桁の11)を

足すことを考えてみる。

 


同じ桁に同じ数が入力されれば0に

(ただし両方とも1の場合は上の桁に1を送る)

違う数が入れば1とするというルール

(アルゴリズムという)で

動かすと101+11=1000と

なって答えが出る(10進数では5+3=8)。

 

 

同じことを量子でやることを考える。

原子の上向きを0、

下向きを1と決めたら、

同じことができるかもしれない。

 
 

原子の場合、

上向きと下向きの重ね合わせ状態にあるならば

それは0と1の両方を表すことになるのだった(量子ビットという)。

 

それぞれの桁が0であり1であるわけなので、

量子ビットが三つあれば000(10進法で0)から

111(同7)まで8通りを一気に表すことができ、

 

0から7までの8つの数字の

足し算ならどの組み合わせ

(1+1、2+7、5+6・・・など)でも

原理上はいっぺんにできる!

というのが量子コンピューターのすごいところだ。

 

 

 ▽うまい話ばかりでは…

 

いっぺんに計算できるのはいいのだが、

計算後にそのまま観測しても、

得られる答えは一つだけ。

 

それも望んだ計算の答えならまだ良いが、

それとは違う計算の答えが出てくる可能性もある。

 

1+1の答えがほしいのに、

2+6の答えが出ることもある。

 

どの計算の答えが出るかは確率的にしか分からない。

 

目的とする計算の答えが出る確率を高める

アルゴリズムはあるが、

それを実行させるプログラミングはかなり面倒だ。

 

 

どうも足し算は量子コンピューターには

向いていない演算のようだ。

 

実は量子の重ね合わせという

特徴を最大限生かされる計算もある。

 

例えば巨大な数字の素因数分解などは

効率的に計算できることが示されており、

 

量子コンピューターの得意分野といえる。

 

だが量子ビットを計算に使えるようにきちんと

制御するのはまだ技術的に難しく、

 

多くのビットを同時に動かして複雑な計算に

役立てることまではできていないのが現状だ。

 

 

 ▽新型は「テレポーテーション」を使う

 

古澤教授ら東大や理化学研究所などの

チームが開発した新型の量子コンピューターが始動した。

 

これまでとは少し違うアプローチのマシーンだという。

 

量子には光の構成単位である光子を使い

「量子テレポーテーション」という

量子特有の現象を駆使する。

 

量子コンピューターには向かない、

足し算や引き算もできるという。

 


ここで「物質を細かくしていった

原子や電子が量子だったのに、

 

光子も量子なの?」と思う人もいるかもしれない。

 

実は光も原子や電子と同じように量子なのだ。

 

少し難しい話をすれば、

どれも粒子としての性質と波としての性質を併せ持つ。

 

光には原子や電子のように質量や

電荷(プラスとかマイナスとか)はないが、

量子としての性質は似ている。

 

 
理化学研究所などが開発した新型の
 
光量子コンピューター(同研究所提供)
 
 
 

話がそれたが量子テレポーテーション。

 

量子を別の場所へ瞬間移動させる技術…ではない。

 

光子などの量子は位置や運動量、

エネルギーなど、

さまざまな物理的な量を持っているが、

量子コンピューターではこれらを情報として扱う。

 

さきほど説明した、原子の上向き、

下向きを0や1として見立てることは

物理的な状態を情報として扱っていることになる。

 


量子テレポーテ-ションでは

ある一つの光子が持つ情報をそっくりそのまま、

 

瞬時に別の光子に移し替えることをいう。

 

古澤教授らが1998年に世界で初めて成功した技術だ。

 


どうやって起こすか?ここはそういう

技術があるということで勘弁してほしいが、

 

必須となるのが量子の「もつれ状態」だ。

 

二つの量子がもつれ状態にあるとは、

互いの状態が連動するということ。

 

例えば、

片方の量子を観測して0という状態だった場合

(これは観測するまで分からない)、

 

もう一方も必ず0になる

(こちらは観測しなくても決定している)

ということが起こる。

 

これは「片方が1の場合に

必ずもう一方が1になる」でもいいが、

 

ポイントはもつれた片方の量子を観測すると、

もう一方の状態が瞬時に確定する点だ。

 

 

この関係はもつれさせた二つの量子が

その後にどんなに離れても消えず、

 

たとえば片方を宇宙の果てまで運んでも、

手元の量子を観測すればもう片方の状態が分かる。

 

これは遠隔地まで情報が

一瞬に届いているように見えるだろう。

 

テレポーテーションはこの現象をうまく利用する。

 


そういう話を聞くと、

情報のテレポーテーションを使って

通信でもするのかと思うだろうが、

 

今回は違う。

 

量子間での情報をやりとりする手段になるのだ。

 


コンピューターは通常、

一つの素子にある数値と別の素子にある

数値を統合して計算を行うため、

 

素子同士をつなぐ導線が必要だ。

 

しかし光子を含めた量子にとって

導線の中を移動するのは鬼門。

 

移動中に消えてしまったり、

劣化して使えなくなったりしてしまう恐れがある。

 

量子は移動させずに、

量子が持つ情報だけ、

瞬間移動させれば導線は

不要になるというのがアイデアだ。

 

配線が不要な演算装置により、

素子である量子を安定的に操作できるようにしている。

 

 

 ▽100個の「もつれ」

 

チームのメンバーで量子コンピューターベンチャー

OptQC(東京都)の最高技術責任者アサバナント・ワリット氏によると、

 

チームは1マイクロ秒(マイクロは100万分の1)ごとに

約100個のもつれた光子を生み出し、

 

次に生成する100個の光子とも複雑に

もつれさせる技術を開発した。

 

網の目のような光子群に互いに

情報をやりとりさせて計算を行う。

 

 

 
アサバナント・ワリット氏
 

具体的な動きはこうだ。

 

網の目の一つの光子Aに、

例えば「5」という数値情報があるとする。

 

量子コンピューターはこの情報をAともつれた別の

光子Bに瞬間移動で移動させることができる。

 

光子Bには別にCというもつれた光子があり、

Cは数値情報として「2」を持つ。

 

量子コンピューターはこれを

Aと同様にBへと飛ばすことができる。

 


Bはもつれた二つの光子ACから同時に

情報が送られたことになるが、

 

Bに対して適切な操作を行うと、

5と2を加えた7という足し算の

結果を出力することもできるし、

 

5から2を引いた3という結果を出すことも可能だ。

 

 

 

 ▽アナログ方式

 

さっきの説明で、光子一つに「5」という情報があると聞いて

「2進法なら5は101だから光子は

3個必要なのではないか」と思わなかっただろうか?

 


実は新型では光子1個を0と1しか

表現できない量子ビットとしては使わない。

 

あれだけ念入りにビットの話をして申し訳ないが、

を「使わない」という点が新型の特徴でもある。

 


量子ビットではなく、

光子が持つさまざまな物理的な量の一つを

そのまま計算用の数値として使う。

 

この記事の前半で登場した

古いタイプのアナログ方式だ。

 

新型で採用しているのは光子の「電場の強さ」で、

ある基準となる電場の強さの

5倍なら「5」、2倍なら「2」として扱う。

 

デジタルにはさまざまなメリットがあったが、

量子コンピューターの分野では、

既に説明したように量子ビットの

安定性の問題からまだ信頼性が薄い。

 

現時点では完全に制御できる量子ビットを

たくさん用意するのは困難なのだ。

 

また原子を量子として使う方式では、

量子の状態を変えるのに時間がかかり、

計算が遅くなるという課題もあるという。

 


昔のアナログコンピューターはこんな感じだ。

 

ある素子にかかる電圧が5Vで、

別の素子に2Vがかかっている場合、

適切な回路で結べば7Vになって、

5+2=7が計算できたことになる。

 

新型も同じことを電場の強さの数字で実行する。

 

数字の5は2進数では101だった。

3ビットが必要になるがアナログ式ならどんな

数字も一つの光子で良い。

 

ワリット氏は「光子の元になる

『パルスレーザー』を出す装置の負担を

軽減するメリットもある」と話す。

 

 

 ▽今後はどうなる?

 

今回の新型機は量子テレポーテーションといった

量子特有の現象を駆使して、

 

足し算引き算というこれまでの量子コンピューターが

必ずしも得意ではない計算を披露している。

 

しかし量子コンピューターのもう一つの

大きな特徴である「重ね合わせ」を使った

計算はまだ実現してない。

 

別々の足し算を一回の操作ではできたりしない。

 

最新の量子の技術を使いつつも、

計算の原理は古いコンピューターと

同じものにとどまっているといえる。

 


だが、チームを率いる古澤明東大教授は

「量子の性質を使って、

 

古典的なコンピューターと同様の動作が

行えることを示せた意義は大きい」と話す。

 

その上で「情報の重ね合わせには

若干の技術開発が必要だが、

 

根本的な問題はない」と

今後の技術の進展に自信をのぞかせている。

 

 

 

 

<参考: >

 

 

最新記事
月別アーカイブ

 
美容室 おしやれ泥棒ルパン

 
〒165-0026
東京都中野区新井5-23-7-1F

TEL:03-3388-4505

       予約制

      営業時間


AM10:00~PM19:00
 
(日、祝日、18:00)

予約受付時間
AM10:00~PM18:00
 
定休日:
 
火曜日(第2、第3、 火、水連休)
 

予約フォームでのご予約は
営業日30日前まで、
24時間受付けております。


https://rupan.p-kit.com/usermail/index.php?id=132496